Q/LH 合标准

业 联

Q/LH SFEAJQ 001-2025

智能建筑边缘混合组网(EMN)应用 技术规范

Edge mixed networking (EMN) technical specification for smart buildings

2025 - 01 - 09 发布

2025 - 01 - 09 实施

目 次

前	言	I	Ι
引	言	II	Ι
1	范围	目	1
2	规范	5性引用文件	1
3	术语	5年和定义	1
4	缩略	各语	2
5	通信	言层	2
	5. 1	SILA-EMN 节点结构	2
	5. 2	层次区划	3
	5.3	通信层报文结构标准	3
	5.4	报文分类	4
	5. 5	安全机制	4
	5.6	跨通信层调度	4
6	应用	月层	4
	6. 1	标准执行器	4
	6.2	标准传感器	6
	6.3	标准面板	6
	6.4	通用输入/通用输出	6
	6.5	标准调试接口	6
	6.6	数据采集	6
7	场景	景化自学习功能	7
	7. 1	通用自学习功能	7
	7. 2	流动公共空间/公交场站/仓库	7
	7.3	办公空间	7
	7.4	酒店客房/教室	7
	7. 5	工业厂房	8
参	考文	献	9

前言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

本文件由智能照明与系统互联标准创新联合体提出并归口。

本文件主要起草单位:上海浦东智能照明联合会、非凡士智能科技(苏州)有限公司、Energy Renewal Pte. Ltd.、广东艾迪明电子有限公司、浙江佳普科技有限公司、中山市驱驰电子有限公司、中山市乐式物联科技有限公司、永林电子(上海)有限公司、青岛东软载波科技股份有限公司、广东奥莱敏控技术有限公司、上海时代之光照明电器检测有限公司、欧智通科技股份有限公司、广州易而达科技股份有限公司、江苏英索纳通信科技有限公司、广东科威腾智能照明有限公司、深圳市力合微电子股份有限公司、杭州威仕达机电科技有限公司。

本文件主要起草人:赵瓅晔、牛刚刚、Jeffrey Gu、代照亮、张德浩、卫建强、靳慧康、刘卫合、潘建亮、黎禧、马金花、王晓辉、贾存玉、周顺花、庄晓波、马小平、张毅、黄先波、邹汉强、朱永、周国厚、洪艳君。

引 言

本文件由上海浦东智能照明联合会(SILA)和非凡士智能科技(苏州)有限公司牵头,旨在规范智能建筑边缘混合组网(Edge Mixed Networking,简称EMN)的应用技术要求,以推动物联网技术在智能建筑领域的深入应用。

EMN 基于集群智能技术,针对多物理层通信、AI自学习与自动化配置、设备互联互通等问题,提供了创新性的解决方案。EMN 制定统一的控制接口标准,使得各种物联设备和边缘计算平台能够被集中管理和控制,简化操作流程,提高系统的自动化和智能化水平。EMN 提供系统优化和维护的指导方针,确保边缘混合组网系统能够适应不同的运行环境和条件,实现自我调整和故障恢复,以维持系统的稳定性和高效性。

本文件通过明确DALI、PLC、BLE的通信层和应用层技术内容、并确立标准化的通信接口,实现不同设备和系统之间的无缝连接、以及网络间的高效协同。本技术规范明确了场景化自学习功能的应用参照,为边缘混合组网技术在多种智能建筑场景的普及起到推动作用;同时为今后国家、地方和行业的其他标准制定提供参考。

本文件的发布机构提请注意,声明符合本文件时,可能涉及以下2项与本文件相关的专利的使用。 专利申请号及其专利名称如下:

序号	专利申请号	专利名称		
1	CN 202211311766.2	一种大规模无线传感网分簇组网方法		
2	CN 202411463800.7	基于物联网灯具系统生成部署位置地图的方法和装置		

本文件的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利持有人已向本文件的发布机构承诺,他愿意同任何申请人在合理且无歧视的条款或条件下,就专利授权许可进行谈判。该专利持有人的声明已在本文件的发布机构备案。相关信息可以通过以下联系方式获得:

专利持有人: 非凡士智能科技(苏州)有限公司

地址: 常熟高新技术产业开发区湖山路2号同济科技广场1幢2207

请注意除上述专利外,本文件的某些内容仍可能涉及专利。本文件发布机构不承担识别专利的责任。

智能建筑边缘混合组网(EMN)应用技术规范

1 范围

本文件界定了智能建筑边缘混合组网的通信层的架构、应用层的功能要求、场景化自学习功能的应用实施要求。

本文件适用于智能建筑边缘混合组网系统和相关设备的设计、生产、安装、调试和使用等相关领域。

2 规范性引用文件

本文件没有规范性引用文件。

3 术语和定义

下列术语和定义适用于本文件。

3.1

节点 node

通信网络中是一个连接点, 或一个通信端点, 通常一个设备就是一个节点。

3. 2

网络 network

EMN网络最大的控制范围,由多个节点构成。

3.3

单元 unit

EMN网络下一级的控制范围,每个节点必须属于且只能属于 1 个单元。

3.4

分组 group

EMN 节点可选的一种辅助控制范围,类似于标签,节点可以属于多个分组。

3.5

指令 instruction

在照明控制协议中,请求数据或者控制消息。

3.6

物理层 physical layer

为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的、电子的、功能的和规范的特性。

3. 7

通信层 communication layer

通信报文格式和传输的规约层。

3.8

应用层 application layer

与使用场景强相关,用于约定业务和功能规范等。

3. 9

状态 state

节点某一时刻可维持运行的一套参数。

3.10

模式 mode

多种状态按照预定逻辑顺序构成的多状态和跳转参数的集合。

3.11

场景 scene

Q/LH SFEAJQ 001-2025

预存在设备内部的模式。

4 缩略语

下列缩略语适用于本文件。

AD: 模数转换 (Analog-Digital)

BLE: 低功耗蓝牙 (Bluetooth Low Energy)

DALI: 数字可寻址照明接口 (Digital Addressable Lighting Interface)

EMN: 边缘混合组网 (Edge Mixed Networking)

IO: 输入输出(Input Output)

PHY: 物理层 (Physical Layer)

PLC: 电力载波通信 (Powerline Communication)
PWM: 脉冲宽度调制 (Pulse width modulation)

UART: 通用异步收发器 (Universal Asynchronous Receiver/Transmitter)

5 通信层

5.1 SILA-EMN 节点结构

5.1.1 通信系统结构

节点结构(如图1所示)包括:

- a) SILA-EMN 标准节点;
- b) SILA-EMN PLC 节点;
- c) SILA-EMN 网关节点。

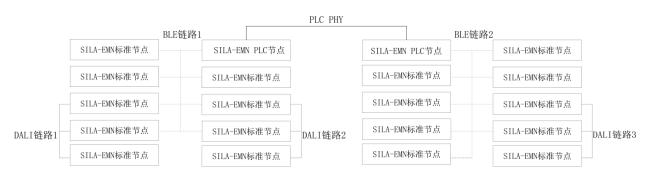


图1 SILA-EMN 网络系统图

5.1.2 SILA-EMN 标准节点

标准节点同时支持BLE PHY和DALI PHY两种物理层。

5.1.3 SILA-EMN PLC 节点

PLC节点在标准节点的基础上增加支持了PLC PHY物理层,如图2所示。

图2 SILA-EMN 标准节点和 SILA-EMN PLC 节点系统图

5.1.4 SILA-EMN 网关节点

与上位系统对接,实现数据采集和远程指令下发的转换节点,如图3所示。

图3 SILA-EMN 网关节点系统图

5.2 层次区划

5.2.1 网络

4字节长度,最大的EMN网络概念,单次可管理的最大单元。但不同网络之间的节点也可以在特定规约下通信。

5.2.2 单元

2字节长度,范围256 ~ 65534,所以一个网络最大支持65279 个单元,因为和分组共享地址域,所以从256 开始。等效于 DALI 的设备地址概念,DALI的设备地址0-63对应EMN单元地址256 ~ 319。每个节点必须且只能属于一个单元。多个节点允许属于同一个单元。

5.2.3 分组

1 字节长度,范围 0 \sim 255,等效于 DALI 的分组概念。每个节点可以属于 0 \sim 32 个分组,所以可以有设备不属于任何分组。

5.2.4 设备/节点

6字节全局唯一地址,每个节点拥有唯一且不重复的地址。等效于MAC地址。此概念不能用于DALI总线中。

5.3 通信层报文结构标准

5.3.1 SILA-EMN BLE/PLC 报文格式

Q/LH SFEAJQ 001-2025

参考EMN4.0标准格式。

5.3.2 SILA-EMN DALI 报文格式

参考DALI2标准格式。

5.4 报文分类

5.4.1 批量写入报文(广播指令)

即所有相同网络的节点进行广播的无回应下行指令,通常由网关或者下载器发起,比如用于以下功能:

- a) 批量模式切换;
- b) 批量场景切换;
- c) 批量参数设置。

5.4.2 单节点报文(单指令)

即可和单一节点进行通信的指令,支持无回应和有回应两种方式,通常由网关或者下载器发起,比如用于以下功能:

- a) EMN 调试指令;
- b) DALI 调试指令;
- c) PLC 调试指令;
- d) 单一设备数据/参数读取。

5.4.3 集群报文(集群指令)

网络局部自行发起的指令,通常由节点自行发起,比如用于:

- a) 传感器状态同步;
- b) 位置自学习计算:
- c) 数据和状态批量上报;
- d) 免配置售后计算。

5.5 安全机制

AES128位加密,每个网络独立密钥,可设置。某些特殊指令允许不加密使用,以维持最低限度的维护需求。集群指令采用不公开的独立密钥,不可设置。

5.6 跨通信层调度

5. 6. 1 BLE-PLC 调度

沿用EMN基本的通信调度机制。增加PLC通信层专属的数据上行通道。

5. 6. 2 BLE-DALI 调度

参照DALI通用指令集IEC 62386—102, 应包括:

- a) DALI 调光指令:将转换为 EMN 常亮指令,对同范围(单元或分组)设备进行控制;
- b) EMN 模式指令: EMN 节点在发生亮度变化时,将自动发送 DALI 指令;
- c) DALI 场景指令:将转换为 EMN 场景指令;
- d) EMN 场景指令:将转换为 DALI 场景指令。

注:经由DALI配置的场景将仅支持常亮。在同一个DALI网络上的多个EMN节点,将自动选择1个节点发送DALI控制信号。

6 应用层

6.1 标准执行器

6.1.1 运行状态数据格式

4

最大4字节,表示某一时刻下可以维持运行的参数。

6.1.2 状态类型

6.1.2.1 运行状态类型

运行状态类型见表1。

表1 运行状态类型

类型名	类型ID	数据格式
仅调光	0x01	字节0-1:亮度(0-65535)
调光调色	0x02	字节0: 亮度(0-255) 字节1: 色温(0-255)
温控器	0v21	字节0:6位温度(0-63)1位温度依据(0:温控器,1:指定传感器)1位温度补偿功能(0:关闭,1:开启)字节1:1位温控器开关(0:关闭,1: 开启)3位运行模式3位风力大小1位面板锁定(0:锁定面板,1:允许手 动控制)
窗帘	0x41	字节0:行程0 字节1:行程1 字节2:行程2 字节3:1位开合状态(0:全合,1:全开)

6.1.2.2 窗帘控制命令

窗帘控制命令见表2。

表2 窗帘控制命令

属性名称	变量格式	单位	变量值及其含义
窗帘类型	1 Byte	_	0 双帘 1 左帘 2 右帘
电机控制	1 Byte	_	0 关闭 1 暂停 2 打开
电机状态	1 Byte	_	0 关闭中 1 暂停中 2 打开中
当前位置	1 Byte	百分比	0~100 步进1 0% 全开 100% 全关
设定位置	1 Byte	百分比	0~100 步进1 0% 全开 100% 全关
电机反向	Bool	_	_
运行速度	1 Byte	_	0 低速 1 中速 2 高速

6.1.3 感应控制模式

模式包含三个状态:有人状态、无人状态、休眠状态。 每个节点可指定 DALI 报文地址域与状态的关系。 状态为固定跳转顺序:有人状态 → 无人状态 → 休眠状态。

6.1.4 场景

Q/LH SFEAJQ 001-2025

场景号0-127, 共128 个场景, 每个场景在设备存储一套完整的感应控制模式, 最大15 字节。

6.1.5 其他参数

可通过参数设置指令进行配置。

6.2 标准传感器

支持以下信息输出:

- a) 运动/存在感应;
- b) 温度;
- c) 照度。

6.3 标准面板

- a) 应支持以下信息输出:
 - 1) 短按;
 - 2) 多次短按;
 - 3) 长按;
 - 4) 松开。
- b) 可支持以下信息输入:
 - 1) 背光亮度值;
 - 2) 强调按键(背光改色)。

6.4 通用输入/通用输出

通过EMN HybridBytes与标准格式进行逻辑绑定。

可通过配备 EMN HybridBytes 的 EMN 网关与以下接口通信:

- a) 第三方 PLC 接口;
- b) KNX;
- c) RS485/RS232/UART;
- d) Modbus;
- e) I0;
- f) 模拟量输入/输出。

6.5 标准调试接口

6.5.1 EMN 调试

遵循EMN4.0调试接口标准,包含以下基本内容:

- a) 设备发现;
- b) 设备与附近设备关系;
- c) 基本参数配置;
- d) 区划档案配置;
- e) 运行参数配置;
- f) 场景参数配置;
- g) 命名:
- h) 单设备点名/单元点名/分组点名/网络点名。

6.5.2 DALI 调试

支持无线转DALI调试指令,包括:

- a) 允许通过无线配置,包括设备地址、组地址;
- b) 通过无线通信识别 DALI 线路关系以及 DALI 通信可达状态;
- c) 允许使用 EMN4.0 的地图生成机制对 DALI 设备进行快速地址分配。

6.6 数据采集

6.6.1 数据包注册机制

需要使用集群智能网络进行采集的数据需要在节点注册,包括以下信息:

- a) 数据间隔分钟数,1 字节;
- b) 优先级, 1 字节;
- c) 数据 ID, 2 字节;
- d) 随后需要按照约定的间隔向节点推送数据,每个时间点数据包长度为 2 字节。

6.6.2 数据包推送逻辑

网关会不定期推送数据包的集合,包括:

- a) 数据来源设备地址;
- b) 数据起始时间;
- c) 数据包数量:
- d) 数据包集合。

7 场景化自学习功能

7.1 通用自学习功能

7.1.1 自动组网

在任意节点获取全网络详细信息,包括节点地址、分组、状态。

7.1.2 免配置售后

无需配置,更换故障品后,新装设备将自动完成配置迁移。

7.2 流动公共空间/公交场站/仓库

7.2.1 联动路径学习

灯具自行学习空间中行动路线,自行完成传感器和灯具的联动关系配置。

7.2.2 雷达感应故障学习

系统自行感知雷达故障, 屏蔽雷达故障信号。

7.3 办公空间

7.3.1 雷达感应故障学习

系统自行感知雷达故障, 屏蔽雷达故障信号。

7.3.2 温控器回风口位置学习

温控器自行学习关联的空调回风口位置。

7.4 酒店客房/教室

7.4.1 默认方案免调试落地

设备安装后无需配置,即可按照空间分布自行分组,按照默认方案运行。

7.4.2 运行方案快速复制

单一空间修改运行方案后,其他类似空间主动复制新的运行方案。

7.4.3 默认方案示例

可以包括以下功能:

a) 助眠功能:针对住客对陌生环境下睡眠需要亮灯的需求,一键启动助眠模式后,预设灯带调整

Q/LH SFEAJQ 001—2025

至5%亮度,1小时后关闭;

- b) 盲摸功能: 客房属于公共环境, 住客对智能面板不熟悉, 晚上起夜时, 盲摸任何一个按键默认 起夜功能, 此功能可避免晚上误按窗帘、灯具全开键等打扰了住客的睡眠质量;
- c) 起夜功能 1: 睡眠模式、助眠模式后盲摸任何一个按键默认起夜功能, 开启预设灯带调整至 5% 亮度, 可联动卫生间灯微亮;
- d) 起夜功能 2: 有接近感应雷达时,睡眠模式、助眠模式后手靠近智能开关面板默认起夜功能, 开启预设灯带调整至 5%亮度,可联动卫生间灯微亮;
- e) 室温关怀: 客房智能温控面板可以设定智能调节温度,通过设置 0 点以后每半小时上调 1 度的速度,缓慢上调温度至 22℃,为需求人士提供客户关怀。

7.5 工业厂房

7.5.1 联动路径学习

灯具自行学习空间中行动路线,自行完成传感器和灯具的联动关系配置,自行学习流动区/非流动区,实现流动区/非流动区独立配置运行参数。

7.5.2 雷达感应故障学习

系统自行感知雷达故障,屏蔽雷达故障信号。

参 考 文 献

- [1] IEC 62386—102 Digital addressable lighting interface Part 102: General requirements Control gear
- [2] 非凡士智能科技 (苏州) 有限公司.一种大规模无线传感网分簇组网方法: 202211311766.2[P].2023-01-31.
- [3] 非凡士智能科技(苏州)有限公司.基于物联网灯具系统生成部署位置地图的方法和装置: 202411463800.7[P]. 2024-11-22.